CONTROL NUMERICO

El control numérico (CN) o control decimal numérico es un sistema de automatización de máquinas herramienta operadas mediante comandos programados en un medio de almacenamiento, en comparación con el mando manual mediante volantes o palancas.

QUE ES EL CONTROL NUMÉRICO

El control numérico (CN) o control decimal numérico es un sistema de automatización de máquinas herramienta operadas mediante comandos programados en un medio de almacenamiento, en comparación con el mando manual mediante volantes o palancas.

Las primeras máquinas de control remoto numérico se construyeron en los años 40 y 50 por el ingeniero John T. Parsons, basadas en las máquinas existentes con motores desmodificados cuyos números se relacionan manualmente siguiendo las instrucciones dadas en un microscopio de tarjeta perforada. Estos servomecanismos iniciales se desarrollaron rápidamente con los equipos analógicos y digitales.

El abaratamiento y miniaturización de los procesadores ha generalizado la electrónica digital en todos los tipos herramienta, lo que dio lugar a la denominación control decimal numérico, control numérico por computadora, control numérico por computador o control numérico computarizado (CNC), para diferenciarlas de las máquinas que no tenían computadora. En la actualidad se usa el término control numérico para referirse a este tipo de sistemas, con o sin computadora.1

Este sistema ha revolucionado la industria debido al abaratamiento de microprocesadores y a la simplificación de la programación de las máquinas de CNC (control numérico por computadora).

FUNCIONAMIENTO

Para mecanizar una pieza se usa un sistema de coordenadas que especificarán el movimiento de la herramienta de corte. El sistema se basa en el control de los movimientos de la herramienta de trabajo con relación a los ejes de coordenadas de la máquina, usando un programa informático ejecutado por una computadora.

En el caso de un torno, hace falta controlar los movimientos de la herramienta en dos ejes de coordenadas: el eje de las X para los desplazamientos longitudinales del carro y el eje de las Z para los desplazamientos transversales de la torre. En el caso de las fresadoras se controlan también los desplazamientos verticales, que corresponden al eje Y. Para ello se incorporan servomotores en los mecanismos de desplazamiento del carro y la torreta, en el caso de los tornos y en la mesa en el caso de la fresadora; dependiendo de la capacidad de la máquina, esto puede no ser limitado únicamente a tres ejes.

El control del movimiento de los ejes de una máquina de control numérico se lleva a cabo mediante unos lazos de control que se componen de encoders o guías lineales y la unidad central. Cada eje está controlado por un lazo de control. Las maniobras no relacionadas con el movimiento de los ejes están controladas por un módulo PLC.

APLICACIONES

Aparte de aplicarse en las máquinas-herramienta para mecanizar metales con alta precisión,​ el CNC se usa en la fabricación de muchos otros productos de ebanistería, carpintería, etc. La aplicación de sistemas de CNC en las máquinas-herramienta han hecho aumentar enormemente la producción, al tiempo que ha hecho posible efectuar operaciones de conformado que era difícil de hacer con máquinas convencionales, por ejemplo la realización de superficies esféricas manteniendo un elevado grado de precisión dimensional. Finalmente, el uso de CNC incide favorablemente en los costos de producción al propiciar la baja de costes de fabricación de muchas máquinas, manteniendo o mejorando su calidad.

PROGRAMACION EN EL CONTROL NUMERICO

Se pueden utilizar dos métodos, la programación manual y la programación automática.

PROGRAMACION MANUAL

En este caso, el programa pieza se escribe únicamente por medio de razonamientos y cálculos que realiza un operario. El programa de mecanizado comprende todo el conjunto de datos que la máquina necesita para la mecanización de la pieza.

A la información en conjunto que corresponde a una misma fase del mecanizado se le denomina bloque o secuencia y se numera para facilitar su búsqueda. Este conjunto de información es interpretado por el intérprete de órdenes. Una secuencia o bloque de programa debe contener todas las funciones geométricas, funciones máquina y funciones tecnológicas del mecanizado. De tal modo, un bloque de programa consta de varias instrucciones.

El comienzo del control numérico ha estado caracterizado por un desarrollo caótico de los códigos de programación pues cada constructor utilizaba el suyo particular. Posteriormente, se vio la necesidad de normalizar los códigos de programación como condición indispensable para que un mismo programa pudiera servir para diversas máquinas con tal de que fuesen del mismo tipo. Los caracteres más usados comúnmente, regidos bajo la norma DIN 66024 y 66025 son, entre otros, los siguientes:

  • N: es la dirección correspondiente al número de bloque o secuencia. Esta dirección va seguida normalmente de un número de tres o cuatro cifras. En el caso del formato N03, el número máximo de bloques que pueden programarse es 1000 (N000 hasta N999).
  • X, Y, Z: son las direcciones correspondientes a las cotas según los ejes X, Y, Z de la máquina herramienta (Y planos cartesianos). Dichas cotas se pueden programar en forma absoluta o relativa, es decir, con respecto al cero pieza o con respecto a la última cota respectivamente.
  • G: es la dirección correspondiente a las funciones preparatorias. Se utilizan para informar al control de las características de las funciones de mecanizado, como por ejemplo, forma de la trayectoria, tipo de corrección de herramienta, parada temporizada, ciclos automáticos, programación absoluta y relativa, etc. La función G va seguida de un número de dos cifras que permite programar hasta 100 funciones preparatorias diferentes.

EJEMPLOS

G00: El trayecto programado se realiza a la máxima velocidad posible, es decir, a la velocidad de desplazamiento en rápido.
G01: Los ejes se gobiernan de tal forma que la herramienta se mueve a lo largo de una línea recta.
G02: Interpolación circular en sentido horario.
G03: Interpolación circular en sentido antihorario.
G05: Trabajo en arista matada.
G07: Trabajo en arista viva.
G09: Trayectoria circular definida por 3 puntos.
G10: Anulación de la imagen espejo.
G11: Imagen espejo en X.
G12: Imagen espejo en Y.
G17: Selección del plano XY.
G18: Selección del plano XZ.
G19: Selección del plano YZ.
G25: Salto incondicional.
G33: Indica ciclo automático de roscado.
G37: Entrada tangencial.
G38: Salida tangencial.
G40: Cancela compensación.
G41: Compensación de corte hacia la izquierda.
G42: Compensación de corte a la derecha.
G43: Compensación del largo de las herramientas.
G44: Anulación de la compensación del largo de las herramientas.
G53/G59: Traslados de origen.
G70: Programación en pulgadas.
G71: Programación en milímetros.
G72: Factor de escala.
G73: Giro del sistema de coordenadas
G77: Es un ciclo automático que permite programar con un único bloque el torneado de un cilindro, etc.
G87: Cajera rectangular
G88: Cajera circular.
G90: Programación de cotas absolutas.
G91: Programación de cotas incrementales.
G94: Velocidad de avance F en mm/min.
  • M: es la dirección correspondiente a las funciones auxiliares o complementarias. Se usan para indicar a la máquina herramienta que se deben realizar operaciones tales como parada programada, rotación del husillo a derechas o a izquierdas, cambio de útil, etc. La dirección m va seguida de un número de dos cifras que permite programar hasta 100 funciones auxiliares diferentes.

EJEMPLOS

M00: Provoca una parada incondicional del programa, detiene el husillo y la refrigeración.
M01: Alto opcional.
M02: Indica el fin del programa. Se debe escribir en el último bloque del programa y posibilita la parada del control una vez ejecutadas el resto de las operaciones contenidas en el mismo bloque.
M03: Activa la rotación del husillo en sentido horario.
M04: Activa la rotación del husillo en sentido antihorario, etc.
M08: Lubricación ON.
M09: Lubricación OFF.
M10: Encendido del accesorio de iluminación.
M30: Final del programa con vuelta al inicio.

(El sentido de giro del usillo es visto por detrás de la máquina, no de nuestro punto de vista como en los tornos convencionales).

M05: Parada del cabezal.
M06: cambio de herramienta (con parada del programa o sin ) en las máquinas de cambio automático no conlleva la parada del programa.
  • F: es la dirección correspondiente a la velocidad de avance. Va seguida de un número de cuatro cifras que indica la velocidad de avance en mm/min.
  • S: es la dirección correspondiente a la velocidad de rotación del husillo principal. Se programa directamente en revoluciones por minuto, usando cuatro dígitos.
  • I, J, K: son direcciones utilizadas para programar arcos de circunferencia. Cuando la interpolación se realiza en el plano X-Y, se utilizan las direcciones I y J. Análogamente, en el plano X-Z, se utilizan las direcciones I y K, y en el plano Y-Z, las direcciones J y K.
  • T: es la dirección correspondiente al número de herramienta. Va seguido de un número de cuatro cifras en el cual los dos primeros indican el número de herramienta y los dos últimos el número de corrección de las mismas.
  • A: ángulo
  • G: función preparatoria
  • M: función auxiliar
  • N: numeración del bloque
  • P: programa
  • R: radio

PROGRAMACION AUTOMATICA

En este caso, los cálculos los realiza un computador, a partir de datos suministrados por el programador dando como resultado el programa de la pieza en un lenguaje de intercambio llamado APT, que posteriormente será traducido mediante un post-procesador al lenguaje máquina adecuado para cada control por computadora.

En realidad, se deberían estandarizar los lenguajes de programación debido a que sería más útil poder desarrollar al máximo las potencialidades de los C.N.C.

 

DESCRIPCION

Desde el concepto estructural, un Control Numérico Computarizado (CNC) incluye:

  • consola del operador (o consola de entrada-salida de datos)
  • pantalla (o panel del operador)
  • combinador
  • Memoria ROM
  • Memoria RAM

Un controlador industrial desempeña la función de combinador, como por ejemplo: un microprocesador, sobre el cual se basa un sistema integrado; un controlador lógico programable o un dispositivo de control más complejo: una computadora industrial. Combinadores modernos tienen mayor precisión y reproductibilidad, memoria extendida, rapidez de procesamiento elevada y diagnósticos mejorados. ​Una característica importante de un combinador CNC es la cantidad de ejes (canales) que el mismo es capaz de sincronizar (controlar). Para esto se requiere un alto rendimiento y un software relacionado. De accionadores sirven servomandos y motores paso a paso. Normalmente se utiliza una red industrial para transferir datos entre un accionador y el sistema de control de la máquina.